21 Disjoint Set Data Structure

Used, for example, to represent multiple strongly-connected components.

Since a strongly-connected component of a graph is the maximal set of vertices satisfying a property, a vertex/edge may only belong to one SCC.

Each object in a set needs to be able to identify if other elements belong to the same set. this is easy to do if each set has a representative object that all objects in the set point to.

22 Graphs

BFS: $O(V+E)$. Use a queue. Add every vertex to the queue as it is discovered for the first time.

DFS: Use recursive calls to DFS. (note: many applications of DFS require keeping track of the discovery/finish times from calling DFS)

In $DFS(u)$:

- (u, v) edge is a back edge \iff v is discovered but not finished.
- (u, v) edge is a forward edge \iff v is discovered and finished and u is not finished.

 $\triangleright \Theta(V+E)$

• (u, v) edge is a cross edge \iff v is finished before u was discovered.

Example: With these discovery/finish times $\left(\frac{1}{A}(\frac{2}{B}(\frac{3}{C}A)^4C(\frac{5}{D})^6D(\frac{7}{E}D)^8B D\right)_A^{10}$ (where '(' indicates discovery and ')' indicates finishing), we have:

- \bullet (C, A) is a back edge because it occurs after ($_A$ and ($_C$
- (E, D) is a cross edge because it occurs after (p, p) , and (E)
- (A, D) is a forward edge because it occurs after $(A, (D, \text{and } D))$

Topological Sort: $\Theta(V+E)$. Call DFS(G). As each vertex finishes, add it to the beginning of a linked list. Return this list.

A strongly-connected component of G is a maximal set of vertices $C \subseteq V$ such that for every u, $v \in C$, $u \sim v$ and $v \sim u$.

To find strongly-connected components of graph G

1: procedure STRONGLYCONNECTEDCOMPONENTS	\triangleright O(Θ (V+E)
$0.$ DFS (any yester of (1))	

^{2:} DFS(any vertex of G)

^{3:} for all vertices v in decreasing order of finish time do

^{4:} $G^T \text{.DFS}(v) \geq \text{All nodes discovered in this call to DFS belong to the}$ same strongly-connected component

^{5:} end for

^{6:} end procedure

An alternate form of topological sort exists, which is also $\Theta(V+E)$. In the case it is called on a graph with cycles, it produces a flawed ordering and has poorer failure modes.

23 Minimum Spanning Trees

Kruskal's Algorithm makes use of the disjoint set data structure.

Prim's Algorithm makes use of a min-Priority Queue to retrieve vertices in non-descending order of weight; and also so that their weights can be decreased.

24 Single-source Shortest Paths

It's often useful to figure out the shortest paths within a graph G, from vertex v to every other vertex in G. This general problem has several variants.

- Single-destination shortest paths: This variant reduces to a SSSP problem if you reverse the direction of every edge in G.
- Single-pair shortest paths: If you need to find the shortest path between vertices u and v in G, solving the SSSP general problem will give you an answer. While it may seem like overkill, no algorithm is known that will solve this problem better than a SSSP algorithm.

Shortest paths have an interesting property: If a \sim c is the shortest path from a to c, and passes through vertex b, then $a \rightarrow b$ is the shortest path from a to b and $b \rightarrow c$ is the shortest path from b to c.

Some gotchas:

- Some SSSP algorithms don't produce correct results (or even halt) if the graph contains negative edge-weights. In particular, cycles of negative weight can create a shortest path with weight $-\infty$.
- Cycles of weight 0 contribute no savings to overall path weight, yet add edge traversals. So no SSSP should contain a 0-weight cycle.
- Positive weight cycles have higher weight than the same path without the cycles, so no SSSP will contain one.

For Graph G and starting vertex s, SSSP algorithms use these common functions:

1: procedure Relax(Source Vertex u, Destination Vertex v, Weight Function w) \triangleright O(1) 2: if distance $[v] >$ distance $[u] + w(u, v)$ then 3: distance[v] \leftarrow distance[u] + w(u, v) 4: $\text{parent}[v] \leftarrow u$ 5: end if 6: end procedure

Here's the first SSSP algorithm:

Though Bellman-Ford is slow, one benefit is that it can determine if there are negative-weight cycles in G, which are detectable if the shortest path keeps getting smaller past a fixed number of relaxation attempts.

DagShortestPaths only works on a DAG (directed acyclic graph), but is faster than Bellman-Ford.

Dijkstra's/Dantzig's algorithm finds SSSPs in much the same way as Prim's algorithm finds MSTs. Whereas Prim's uses a Min-Priority Queue to keep track of minimum edge weights to a vertex, Dijkstra's associates with each vertex the minimum path weight to reach that vertex.

Dijkstra's algorithm will give the wrong answer if the graph it's used on has negative weights.

25 All-Pairs Shortest Paths

The Floyd-Warshall algorithm is similar to the Bellman-Ford SSSP algorithm, but with more work and storage. Whereas B-F stored, for each destination vertex, what the parent and path-cost is on a path originating at some source vertex, F-W must store those two facts for each source vertex \times destination vertex pair.

Basically, you start with an adjacency matrix. Then, for each vertex, $\{v_1,$ $v_2, ..., v_n$ you derive a matrix from it that indicates the shortest paths from each vertex to each other vertex by storing only information about vertices that precede it on the path.

```
1: procedure FLOYDWARSHALL(n \times n Matrix W)
                                                                  ) time, O(V^2)memory
2: n \leftarrow \text{rows}(W)3: D^0 \leftarrow W4: for k \leftarrow 1 to n do
5: for i \leftarrow 1 to n do
 6: for j \leftarrow 1 to n do
 7: d_{i,j}^k \leftarrow \min(d_{i,j}^{k-1}, d_{i,k}^{k-1} + d_{k,j}^{k-1})8: end for
9: end for
10: Destroy D^{k-1}11: end for
12: return D^n13: end procedure
```
 $i \rightarrow k \rightarrow j$ implies that $i \rightarrow k$ and $k \rightarrow j$. So if you're running Floyd-Warshall, you can save a lot of arithmetic by applying these rules:

1. if a row has ∞ in column k, then nothing in this row will change during

this iteration of the outer loop. i.e., $i \leadsto j$ does not pass through k if i has no path to k.

2. if a column has ∞ in row k, then nothing in that column will change during this k. This is because $i \rightsquigarrow j \rightsquigarrow k$ only if $j \rightsquigarrow k$.