
21 Disjoint Set Data Structure

Used, for example, to represent multiple strongly-connected components.

Since a strongly-connected component of a graph is the maximal set of ver-
tices satisfying a property, a vertex/edge may only belong to one SCC.

Each object in a set needs to be able to identify if other elements belong to
the same set. this is easy to do if each set has a representative object that all
objects in the set point to.

1: procedure MakeSet(Object o) . O(1)
2: o.size ← 1
3: o.parent ← 1
4: end procedure

1: procedure FindSet(Object o) . O(lg* n)
2: if o.parent = 0 then return 0
3: end if
4: o.parent ← FindSet(o.parent) . path compression
5: return o.parent
6: end procedure

1: procedure Union(Object o, Object p) . O(lg* n)
2: x ← FindSet(o)
3: y ← FindSet(p)
4: if x.size ≥ y.size then
5: y.parent ← x
6: x.size ← x.size + y.size
7: else
8: x.parent ← y
9: y.size ← y.size + x.size

10: end if
11: end procedure

22 Graphs

BFS: O(V+E). Use a queue. Add every vertex to the queue as it is discovered
for the first time.

DFS: Use recursive calls to DFS. (note: many applications of DFS require
keeping track of the discovery/finish times from calling DFS)

1



1: procedure DFS(Vertex v) . Θ(V+E)
2: if v has been discovered then
3: return
4: end if
5: discover v
6: for all vertices u such that v has an edge to u do
7: DFS(u)
8: end for
9: finish v

10: end procedure

In DFS(u):

• (u, v) edge is a back edge ⇐⇒ v is discovered but not finished.

• (u, v) edge is a forward edge ⇐⇒ v is discovered and finished and u is
not finished.

• (u, v) edge is a cross edge ⇐⇒ v is finished before u was discovered.

Example: With these discovery/finish times (1A(2B(3CA)4C(5D)6D(7ED)8E)9BD)10A
(where ’(’ indicates discovery and ’)’ indicates finishing), we have:

• (C, A) is a back edge because it occurs after (A and (C

• (E, D) is a cross edge because it occurs after (D, )D, and (E

• (A, D) is a forward edge because it occurs after (A, (D, and )D

Topological Sort: Θ(V+E). Call DFS(G). As each vertex finishes, add it to
the beginning of a linked list. Return this list.

A strongly-connected component of G is a maximal set of vertices C ⊆ V
such that for every u, v ∈ C, u ; v and v ; u.

To find strongly-connected components of graph G

1: procedure StronglyConnectedComponents . O(Θ(V+E)
2: DFS(any vertex of G)
3: for all vertices v in decreasing order of finish time do
4: GT .DFS(v) . All nodes discovered in this call to DFS belong to the

same strongly-connected component
5: end for
6: end procedure

2



An alternate form of topological sort exists, which is also Θ(V+E). In the
case it is called on a graph with cycles, it produces a flawed ordering and has
poorer failure modes.

1: procedure AltTopologicalSort(Graph G) . Θ(V+E)
2: Create a queue Topo
3: Create a queue Q
4: for all vertices v ∈ G do
5: if v.indegree = 0 then
6: Q.enqueue(v)
7: end if
8: end for
9: while Q nonempty do

10: vertex u ← Q.dequeue
11: Topo.enqueue(u)
12: for all vertices v such that (u, v) ∈ G do
13: v.indegree ← v.indegree - 1
14: if v.indegree = 0 then
15: Q.enqueue(v)
16: end if
17: end for
18: end while
19: for all vertices v ∈ G do
20: if v.indegree 6= 0 then . Found a cycle. Uh-oh!
21: end if
22: end for
23: return Topo
24: end procedure

23 Minimum Spanning Trees

Kruskal’s Algorithm makes use of the disjoint set data structure.

Prim’s Algorithm makes use of a min-Priority Queue to retrieve vertices in
non-descending order of weight; and also so that their weights can be decreased.

24 Single-source Shortest Paths

It’s often useful to figure out the shortest paths within a graph G, from
vertex v to every other vertex in G. This general problem has several variants.

3



1: procedure KruskalsMST(Graph G) . O(E lg V)
2: for all vertices v ∈ G do
3: MakeSet(v)
4: end for
5: sort the edges of G in non-descending order by edge-weight
6: for all edges (u, v) in non-descending order by weight do
7: if FindSet(u) 6= FindSet(v) then
8: add edge (u, v) to MST
9: Union(u, v)

10: end if
11: end for
12: end procedure

1: procedure PrimsMST(Graph G) . O(E lg V)
2: for all vertices v ∈ G do . initialize all vertices
3: key[v] ← ∞
4: π[v] ← null
5: end for
6: key[some initial vertex] ← 0
7: PriorityQueue Q ← all vertices
8: while Q not empty do
9: vertex u ← ExtractMin(Q)

10: for all vertices v such that (u, v) is an edge in G do
11: if v ∈ Q and weight(u, v) ¡ key[v] then
12: π[v] ← u
13: key[v] ← weight(u, v)
14: end if
15: end for
16: add edge (π[u], u) to MST
17: end while
18: end procedure

4



• Single-destination shortest paths: This variant reduces to a SSSP problem
if you reverse the direction of every edge in G.

• Single-pair shortest paths: If you need to find the shortest path between
vertices u and v in G, solving the SSSP general problem will give you an
answer. While it may seem like overkill, no algorithm is known that will
solve this problem better than a SSSP algorithm.

Shortest paths have an interesting property: If a ; c is the shortest path
from a to c, and passes through vertex b, then a ; b is the shortest path from
a to b and b ; c is the shortest path from b to c.

Some gotchas:

• Some SSSP algorithms don’t produce correct results (or even halt) if the
graph contains negative edge-weights. In particular, cycles of negative
weight can create a shortest path with weight −∞.

• Cycles of weight 0 contribute no savings to overall path weight, yet add
edge traversals. So no SSSP should contain a 0-weight cycle.

• Positive weight cycles have higher weight than the same path without the
cycles, so no SSSP will contain one.

For Graph G and starting vertex s, SSSP algorithms use these common
functions:

1: procedure InitializeSingleSource(Graph G, Vertex v) . Θ(V)
2: for all vertices v ∈ G do
3: distance[v] ← ∞
4: parent[v] ← null
5: end for
6: distance[s] ← 0
7: end procedure

1: procedure Relax(Source Vertex u, Destination Vertex v, Weight Function
w) . O(1)

2: if distance[v] > distance[u] + w(u, v) then
3: distance[v] ← distance[u] + w(u, v)
4: parent[v] ← u
5: end if
6: end procedure

Here’s the first SSSP algorithm:

5



1: procedure BellmanFord(Graph G, Weight Function w, Starting Vertex
s) . O(VE)

2: InitializeSingleSource(G, s)
3: for i ← 1 to —V(G)— - 1 do
4: for all edge (u, v) in G do
5: Relax(u, v, w)
6: end for
7: end for
8: for all edge (u, v) ∈ G do
9: if distance[v] > distance[u] + w(u, v) then

10: return false . found a negative-weight cycle
11: end if
12: end for
13: return true . found no negative-weight cycles
14: end procedure

Though Bellman-Ford is slow, one benefit is that it can determine if there
are negative-weight cycles in G, which are detectable if the shortest path keeps
getting smaller past a fixed number of relaxation attempts.

DagShortestPaths only works on a DAG (directed acyclic graph), but is
faster than Bellman-Ford.

1: procedure DagShortestPaths(Graph G, Weight Function w, Starting
Vertex s) . Θ(V+E)

2: T ← a list of the vertices of G, sorted topologically
3: InitializeSingleSource(G, s)
4: for all vertices u ∈ T do
5: for all vertices v such that (u, v) is an edge in G do
6: Relax(u, v, w)
7: end for
8: end for
9: end procedure

Dijkstra’s/Dantzig’s algorithm finds SSSPs in much the same way as Prim’s
algorithm finds MSTs. Whereas Prim’s uses a Min-Priority Queue to keep track
of minimum edge weights to a vertex, Dijkstra’s associates with each vertex the
minimum path weight to reach that vertex.

Dijkstra’s algorithm will give the wrong answer if the graph it’s used on has
negative weights.

6



1: procedure Dijkstra(Graph G, Weight Function w, Starting Vertex s) .
O(E lg V)

2: InitializeSingleSource(G, s)
3: MinPriorityQueue Q ← all vertices ∈ G
4: while Q is not empty do
5: Vertex u ← ExtractMin(Q)
6: for all vertices v such that (u, v) ∈ G do
7: Relax(u, v, w)
8: end for
9: end while

10: end procedure

25 All-Pairs Shortest Paths

The Floyd-Warshall algorithm is similar to the Bellman-Ford SSSP algo-
rithm, but with more work and storage. Whereas B-F stored, for each desti-
nation vertex, what the parent and path-cost is on a path originating at some
source vertex, F-W must store those two facts for each source vertex × desti-
nation vertex pair.

Basically, you start with an adjacency matrix. Then, for each vertex, { v1,
v2, ..., vn } you derive a matrix from it that indicates the shortest paths from
each vertex to each other vertex by storing only information about vertices that
precede it on the path.

1: procedure FloydWarshall(n × n Matrix W) . Θ(V3) time, O(V2)
memory

2: n ← rows(W)
3: D0 ← W
4: for k ← 1 to n do
5: for i ← 1 to n do
6: for j ← 1 to n do
7: dki,j ← min(dk−1

i,j , dk−1
i,k + dk−1

k,j )
8: end for
9: end for

10: Destroy Dk−1

11: end for
12: return Dn

13: end procedure

i ; k ; j implies that i ; k and k ; j. So if you’re running Floyd-Warshall,
you can save a lot of arithmetic by applying these rules:

1. if a row has ∞ in column k, then nothing in this row will change during

7



this iteration of the outer loop. i.e., i ; j does not pass through k if i has
no path to k.

2. if a column has ∞ in row k, then nothing in that column will change
during this k. This is because i ; j ; k only if j ; k.

8


